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Abstract. It is shown how a-stable distributions arise in statisti-

cal physics. A probabilistic proof of Khalfin's formula for decaying

quantum systems is given. Also ergodic properties of symmetric

c-stable flows in classical statistical mechanics are discussed.

1. Introduction.

Exactly sixty years ago Levy (1924) has initiated the theory of

stable distributions. His theory was completed by Gnedenko and

Kolmogorov (1954), who mentioned "it is probable that the scope of

applied problems in which stable distributions play an essential role

will become in due course rather wide". The double anniversary moti-

vated us to present some applications of stable distributions and

processes to statistical physics. In passing, let us remark that

in probability books only reference to Holtsmark (1915) work on the

gravitational field of stars (3/2-stable distribution) is made. The

only exception is a very recent book of Zolotarev (1983).

In recent years, inverse power long tails have become more

evident in the analysis of physical phenomena and therefore stable

distributions provide useful models. In the rest of this section we

mention a number of works in this area. In section 2 we show how

completely asymmetric a-stable distributions arise in quantum stati-

stical physics and we sketch a probabilistic proof of Khalfin's

formula for non-decay probability function. In section 3 we discuss

how recent results of Cambanis, Hardin and Weron (1984) on ergodic

pronerties of stationary symmetric a-stable processes can he used

1Supported in part by AFOSR Grant No. F49620 82 C 0009.

2 On leave from Technical University of Wroclaw, 50-370 Wroclaw,Poland.
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in classical statistical mechanics.

Let us recall that a probability distribution Ii on (- , ) is

a-stable if its characteristic function k(t) = 4(t) is given by ]

iyt - (aIt ja ) {1-i8 sign(t) tan(cTa/2)} if a #
Log 4(t) = (1)

iyt - altl - i8(2/n)ct logitI if a = 1,

01

where a,8,y and a are real constants with a > 0, 0 < a < 2 and

<91 < 1. See, Gnedenko and Kolmogorov (1954). Here a is the char-

acteristic exponent, y and a determine location and scale. The co-

efficient 8 indicates whether the a-stable distribution is symmetric

tB=O) or completely asymmetric (181 = 1). Only in the case 0<a<l the

*t-stable densities with j81 = 1 are one-sided i.e., their support is

[0,+-) for a = I and (--,0) for B = -1.

For a comprehensive survey of the recent works on a-stable

processes and their relation via "correspondence principle" with 0

a-stable measures on vector spaces cf. Weron (1984).

There are many physical phenomena which exhibit both space and

time long tails and thus seem to violate the requirement of Gaussian

distribution as a limit in the traditional central limit theorem. 0

However, since these physical systems are stable in the sense a

Gaussian is but without second moments, one suspects the use of sta-

ble distributions which have long tails to be relevant in the physics

of these phenomena. A clear physical basis is required to justify

the use of stable distribution in much the same way Khinchin (1949)

gave a physical justification for the use of Gaussian distributions.

Tunaley (1972) invoked physical arguments to suggest that if the

freqIience distributions in metallic films are stable then the ob-

served noise characteristics in them may be understood. Based only

on the experimental observations that near second order phase tran-

sitions where long tail spatial order develops, Jona-Lasinio (1975)

considered stable distributions as a basic ingredient in understanding

renormalization group notions in explaining such phenomena. Scher

and Montroll (1975) connect intermittant currents in certain xero-

graphic films to a stable distribition of waiting times for the

jumping of charges out of a distribution of deep traps. This

provided a basic theoretical model for dispersive transport in amor-

phous materials.

As examples of the exploration of the stable processes models in -

physical contexts, we may cite a few very interesting papers. Doob

" : ." " * " .- :. > . '" * ".- ' -.- * ." ' .*i



3 0

(1942), West and Seshadri (1982) examined the response of a linear

system driven by stable fluctuations. Mandelbrot and van Ness (1968)

used Gaussian and stable fractional stochastic processes in several

interesting situations. Montroll and West (1979), see also references

there, Hughes, Shlesinger, and Montroll (1981),and Montroll and

Shlesinger (1982) examined random walks with self-similar clusters

leading to "Levy flights" and 11/f noise". If the diffusion of

defects in a medium containing many polar molecules is executed as a

continuous-time random walk composed of an alternation of steps and

passes and the pausing-time distribution function has a long tail,

then Montroll and Bendler (1984) have obtained the Williams-Watts

form of dielectric relaxation. ]

2. Decay theory of quantum systems.

The quantum description of decaying systems has been the subject

* of many investigations since the early days of quantum mechanics.

For a review of different attempts to solve this interesting problem

of quantum physics, see, Fonda et al, (1978). Let us recall only

that the discovery of natural radioactivity Becquerel (1t96) and the

identification of two new radioactive elements, i.e., polonium and 0

radium by Mme Sklodowska-Curie (1898) marks the beginning of the

studies of decay processes. The classical theory of the decay is

based on the assumption that radioactive nuclei have a certain pro-

bability of undergoing decay and that this probability does not depend •

on the past history of the individual decaying nuclei. From which

one gets the exponential decay law

N(t) = N(O) exp(-t/T), (2)

where N(t) is the number of radioactive nuclei which are present at

time t and T is the lifetime of a radioactive nucleus.

In quantum description of the decay process, one determines
the probability P(t) of finding, for a measurement at time t, the

quantum system in the same physical situation, i.e., in the same

state i, in which it was at the initial time t=O. The mathematical

quantity which is relevant for this problem is then

P(t) IA(t)[2 t > 0 (3) 0

wl1 ' I' -

A(t) * (i, exp (-Dt/)i), (4)
0 if.

-y - . - . . .. .. . . . •. .. :. - . . .*
.. . . . .. , . , . .. " '
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D being the development operator governing the dynamical evolution of

the quantum system under investigation, and h = 2wi is Planck's con-

stant. Originally, Krylov-Fock (1947) used in formula (4) Hamilton-

ian operator L, but their model is not now accepted, see Fonda et al.

(1978), since it is known that a decaying system cannot be described

by the unitary evolution Ut = exp(-iLt).

When an ensemble of identical quantum systems is considered, the 0

number N(t) of systems which are found in the original state at time

t is given by

N(t) = N(O)P(t). (5)

Equation (5) is then the quantum analogue of the classical equation

(2). Several authors have studied in various contexts the behaviour

of P(t).

We shall derive the nonexponential form of P(t) for many-body

systems from a completely asymmetric a-stable energy distribution of

the decaying system. Let us mention that nonexponential decay law

obtained first asymptotically for large times by Khalfin (1957),

still attrac*s interest, see for example Bunimovich-Sinai (1981),

Hack (1982), Lee (1983), and Hart-Girardeau (1983). '.

THEOREM 1.

The non-decay probability function for many-body weakly inter-

acting quantum systems has the form

P(t) = exp (-ct ), c > 0, 0 < a < 1. (6)

J Proof. In the quantum statistical mechanics the time evolution of a

physical system in equilibrium is given by a dynamical group U-
t

= exp(-iLt), which is uniquely determined by its generator defined

by the Hamiltonian L of the system. In order to handle a decaying

system this time evolution has to be generalized, since the decaying 0
systems are not relevant to the discussion of equilibrium.

The time evolution of decaying system is described by dynamical

semigroup cf. Davis (1976), Fonda et al. (1978), and Blum (1981).

For this consider a continuous one-parameter semigroup Tt of con-

tractions on the Hilbert space L(H) of all Hilbert-Schmidt operators

on the Hilbert space H associated with a quantum mechanical system.

By Nagy-Foias (1)60) theorem this semigroup uniquely split' .

tiito the orthogonal sum of a unitary semigroup and of a completely

noii-||nitary (c.n.u.) semigroup

. * * . . . .. .. .... . ... . ,
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IHille-Yosida theorem gives a form of infinitesimal generators

Tru1 = exp{ (-t L)/}
t

and

Tcnu = exp {(-tD - itL1)/j}
t1

where L, L1 , D are self-adjoint operators on L(H) and D has positive

spectrum.

If p(t) is a density operator of the system i.e., self-adjoint,

positive with finite trace (see Blum (1981)), then p(t) = T p(o) and

p =t) (Tu a Tcnu) p(t) = Pu(t) cut t
Moreover,

dt
iA a- p (t) =L p(t) = L, p (t)] (7)

and

d cnu cnu~[L Cnu(t] [Dcnu~t
dt p c (t) = (Ll-i D) p cnu(t) = [Lisp )] -[D, +(t']

(8)
where L, Lip D are self-adjoint operator on H, L, L1 are Hamil-

tonians and D a new development operator with positive spectrum.

Formula (7) is a classical voii Neumann equation and (8) its analogue

for c.n.u. part. F , ] denotes here comutator and [ , ]+ anticomu-
tator, for more details cf. Weron, Rajagopal, and Weron (1984).

In particular, assuming for simplicity that L= 0, we have

cnu - tD/i cnu e -tD/fi cnu -tD/f
(t) P e (0) (0)e- , (9)

which shows that D governs the dynamical evolution of the decaying

quantum system.

Introducing probability density p(e) of the state associated

with the continuous spectrum of the development operator D one can

write (see (3) and (4))

A(t) (p, exp(-Dt/4)f) = exp(-Ct/4) (W,E(dE)p) =

0

0 exp( t/-6) p(r)dL, 110 1

0
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where E(') is the spectral measure of the development operator D.

Thus A(t) is the Laplace transform of the probability density p(E)

of the decaying state P.
Observe that there is an arbitrariness in the specification of

and p(c). In general one considers P to represent a decaying state

for a many-body system, and therefore the number of components in the

system should not influence the decay. In other words the same

decaying law should be obtained for one portion or several portions

of the system. Consequently, in a weakly interacting quantum system

microscopic energies can be considered as independent identically

distributed energy random variables. The macroscopic energy distri-

bution p(E)dE associated with the decaying system is identified to be

the limit distribution of normalized sums of the microscopic energy

random variables. By the limit theorem, Gnedenko and Kolmogorov

(1954), it is well known that the limit p(E)dc has c-stable distri-

bution 0 < a < 2. Since p(c) is associated from the above construc-

tion with the development operator D, it has to have positive support.

This holds only when p(E)de has a completely asymmetric (8 = 1,

0 < a < 1) stable distribution. Thus by (10) it is enough to evalu-

ate its Laplace transform. In the case at hand, formula (1) can be

rewritten, if we put y = 0, in the following form

Log (t) -0lte (cos(nc/2) -i sin(Tra/2)) = -o1 (-it)

where a1 = o/cos (7a/2) and t > 0.

Consequently, the Fourier transform of p(c)dc has the form

exp(-0l(t/i)a). By the well known relation between Fourier and

Laplace transforms, F(f(x); t) = L(f(x);-it), when f(x) has positive

support, see Gradshteyn and Ryzhik (1980) p. 1153. Hence we get that

the Laplace transform of p(c)de

L(p(c);t) = exp(-olta) (11)

Finally, by (3), (4), (10) and (11)

a 2P(t) = [exp (-olt)] = exp (-2Ot ),

which give formula (6) with c = 20 and 0 < a < I.

3. Ergodic properties of stable dynamical systems.

According to the theory of ensembles,cf. Arnold and Avez (1968),

an isolated system is in equilibrium when it is represented by a
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"microcanonical ensemble" i.e., when all points on the surface of

given energy have the same probability. This means that the energy

must be the only invariant. But for many physical systems energy is

far from being the only invariant and consequently a system is wan-

dering on a very small fraction of the constant energy.

Boltzmann introduced a new (ergodic) type of dynamics system

for which the energy is the only invariant. In its modern form

Boltzmann's Ergodic Hypothesis: "the point of phase space repre-

senting the state of Hamiltonian systems wanders everywhere on its

hypersurface of constant energy" is replaced by the notion of metric

transitivity. It says that every subset of a hypersurface of con-

stant energy that is carried into itself by the time development of

the system is either of measure zero or is the complement of a sub-

set of measure zero.

The measure referred to is given by the so-called micro-canon-

* ical ensemble

P(S) = 6(E - H(q,p))dq4p,

S

where S is a subset of the hypersurface of given energy E,

q = {ql, ... qm} and p = {pl,... Pm } are the canonical variables and

H is the Hamiltonian of the system. The time evolution of the system

is given by a flow i.e., a measure preserving family of mappings

T t{q,p} = {q(t), p(t)} such that

= , TnTk = Tn+k p(TnS) =(S), n,k e 7/.

Any flow induces a one parameter group of transformations of functions

0 f's defined on the hypersurface S1E of given energy E:

X N(unf) (qp) E f(Tn{q,p}), n o Z.

Now a flow is metrically transitive if the only functions satisfying

U nf = f for all n, except possibly on a set of p-measure zero, are P

constant almost everywhere.2m
Observe that 1 Ec Rm with the micro-canonical measure p plays

a role of probability space adequate to our problem. Thus all pro-

babilistic characteristics of the flow can be expressed in terms of

the measure p. See Cornfeld-Fomin-Sinai (1982).

When the functions f's are chosen in the Hilbert space
*2 n

L (SlE,),for example when p is Gaussian, then {U , n r Z/} turns out
Evn k n+k oto be a unitary one-parameter group UnU = U U = I and

•*- , - - . , . - - - . . . ,- -- .
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(Un)* = U- Von Neumann's ergodic theorem says that

N-ao N f(Tnx)

n=l

exists in L2(QEp) and equals

f f(x) du (x),

i.e., time average equals phase average. P

When the functions f's are chosen in the Banach space LP(Q E,1),

for example when U is a symmetric a-stable measure and 1 < p < a < 2,
n .. Pthen {Un , n E 7/} becomes a group of isometries on L (Q E,1) and

similar ergodic behaviour follows from Bellow's (1964) ergodic

theorem.

Professional statistical mechanicians are not much impressed.
They ask: How does one verify that a concretely given dynamical

system is metrically transitive? The answer is that it isn't so easy

to do. However, it is well known that there are many ergodic

( metrically transitive) flows and also many which are not ergodic,

cf. Cornfeld, Fomin and Sinai (1982), where Gaussian case is studied

in detail. Since a-stable distributions form a universal class of

limit distributions, the systematic use of limit theorems for rigo-

rous proofs in statistical mechanics originated by Khinchin (1949),

motivated us to study symmetric a-stable flows.

In order to define them consider the space S of all real

sequences {x(n), n e 1} with the minimal a-algebra A containing all

the finite-dimensional cylinders. The probability measure m on A

is said to be symmetric a-stable if the joint distribution of any

vector

X = (x(n1), x(n 2) ,...,x(nr))

is an r-dimensional symmetric a-stable distribution i.e., if its

characteristic function has a form

exp (-J I<tx>lcdrx(dx)),

r

where t =(tl,...,tr), x u (x I ,...,x r e <t,x> = t I  xr r

and r is a symmetric finite measure on the unit sphere S of IR

called the spectral measure of the vector X. Denote by Tn the

shift transformation in the space S, i.e., T nx(k) = x(n+k). If the

* • .... . ... . : .: .
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measure m is invariant w.r.t. Tn then the group {T n , n : , of shifts

on the space S is said to be symmetric c-stable flow.

As it follows from Hardin (1982) any such flow (or equivalently
n

its induced group U of transformations) can be represented in law by

X = [ (Unf)(x)Z(dx), (12)

0

where (M,E,v) is a measure space, f c L a(M,,v) La(v) is a fixed

function, {}, n E 7 is a group of isometries on L (V) is the

canonical independly scattered symmetric a-stable measi 'n (M,F,v)

i.e., for all disjoint sets Mi. .. IM n E of finite v-nmeasu-e the 0" J n

random variables Z(M 1) ,...,Z(M n) are independent with

E exp (itZ(Mlk)) = exp (-Itl\v (Mk)).

Observe that a mean zero Gaussian (a = 2) flow on (SIE, ) can be 0

trivially represented in form (12). To see this, let Z be the

canonical independently scattered Gaussian measure on (iE,p). Then by

checking characteristic functions we see that the Gaussian flow U nf

has the same distribution as

J unf(x)Z(dx)

2E

The following general answer for the above discussed question

can be immediately obtained from the recent result of Cambanis,

iardin and Weron (1984) on stationary stable processes.

THFOREM 2.

A , jrmot n F-.t~dh1 fiow,O < a < 2 with the j,, ,tm! ?,,, I ,

tation (12) is metrically transitive iff for each h sp {Ufr,

n E 7/1 the following two conditions hold
OL
L (v)

1 N nlim Y IIlU h hI a  = 211hIlci
N-o n=l

In a 
Nd 

o
lim I lunh-hlla = 411h1. 1
N -co n=l a a

It turns out that these conditions provide , useful criter ,,

for metric transitivity. For example moving averagr ix-stable tlo)'.

are metrically transitive and a-sub-Gaussian flows are never

* *1 . '. . -." - ... .- " . . .. " ,I- ' .-- j. '- : ""
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metrically transive. For the proof of Theorem 2 and more results we

refer to Cambanis, Ilardin, and Weron (1984). Ilere we will discuss

only one example. S

EXAMP LE

A real symmetric a-stable flow is called harmonizable if its

induced group of transformations X n Unf has the following represen- 0
n

t ation: n1

Xn = Re 10 e dW(X), n 7/, (IS)

where W is a rotationally invariant, i.e., the distribution ofi I

{e "W(A), A e B[O,2r)} does not depend on v, independently scattered

complex symmetric a-stable measure on ([0,27), B,v) and v is finite,

see Cambanis (1983). Of course, any real Gaussian flow has a har-

monic representation (15), where IV(.) is an independently scattered

complex Gaussian measure such that F_ exp{i Re fudW) = exp(-I Jul 2),

u E L 2(v). However, a-stable flows with 0 < a < 2 do not have in

general harmonic representation cf. CamNanis and Soltani (1984).

It is well known, Maruyama (1949), Grenander (1950), and Fomin

(19.)0), that a Gaussian flow is metrically transitive iff the

spectr;4l measure F (F(A) = E IW(A) 12) has no atoms. For a<2 it is

enough to check conditions (13) and (14) in Th. 2. Note that the

lCft hand side ,f the formula (13) takes the form

Nf II[ (e -l)h(2.) I 1  le inX- - 1 1 a h (X) [ (dX) =

n=l n=l 0

N 0 n=l o I

N I svi n )(CflhIVdX

2 o/7 Isin xltdx j Ih(X) I (dX) C jlh-j
0 (0,2 •T)

Observe that when a = 2, C 2 and thus (13) holds provided v{0}=O.
2

iowever, when a < 2 then C < 2 and (13) is not satisfied. Conse-

quently by Th. 2 symmetric a-stable harmonizable flow is never metri-

calliy transitive for a < 2. This fact has been established also by

LePage (1980) by a different method. [

0
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